Transport of O₂ during strenuous exercise

- ● In heavy exercise interstitial fluid Po₂= 15mm Hg (saturation = 22%)
- O 20-folds increase in O₂ transport to tissues

 - 6-7 folds increase in CO

Combined O ₂ ml/dL	Arterial blood, Po ₂ =95mmHg, Hb saturation 97%	Venous blood, Po ₂ =15mmHg, Hb saturation 22%	Amount of O ₂ carried to tissues by each dL of blood (exercise)
Exercise	20.1×0.97=19.5 ml	20.1×0.22= 4.4ml	19.5 – 4.4=15.1ml
Rest	20.1×0.97=19.5 ml	20.1×0.75= 15.1ml	19.5 – 15.1=4.4ml

O₂-Hb dissociation curve

- Definition: curve relating percent O_2 saturation of Hb to the Po_2
- Procedure:
 - 10 tonometers are filled with a known quantity of blood having known Hb%

- The blood in each tonometer is exposed to O₂ at different partial pr.
- % Saturation of Hb with O_2 is measured.
- PO_2 and % saturation are plotted $\rightarrow O_2$ -Hb dissociation curve
- O Shape: S (sigmoid) shaped .
 - High affinity at high O₂ tension (flat) & low affinity at low O₂ tension (steep)

Flat Top (Saturation phase) (PO₂ = 60-100 mmHg)

- ↓ Arterial PO₂ (low PO₂ in inspired air lung disease)→little change in % saturation of Hb
 - PO_2 100mmHg \rightarrow 97% saturation
 - $PO_2 60mmHg \rightarrow 90\%$ saturation
 - Safety margin for exchange of O₂ in lungs.
- \uparrow PO₂ >100 mmHg → no significant increase in % saturation of Hb.

Steep fall (dissociation phase) (Po₂=20-60mm Hg)

- $PO_2 = 60 \text{ mmHg} \rightarrow 90\%$
- $PO_2 = 20 \text{ mmHg} \rightarrow 30\%$
- Small ↓ in PO₂ → great reduction in % saturation of Hb→ unloading of O₂ to tissues.

Changes in Hb-O₂ dissociation curve

- The position of the O₂-Hb dissociation curve is not fixed & can vary by a few factors \rightarrow changes in the affinity of Hb for O₂.
- The position of the curve can be defined by the PO₂ at which 50% of Hb is bound to $O_2(P_{50})$.
- O At normal body temp (37°C) arterial blood with a pH of 7.4, a PCO₂ of 40 mmHg, P₅₀ ≈ 27 mmHg.
 - $\uparrow P_{50} \rightarrow \downarrow affinity of Hb for O_2 \rightarrow the curve is shifted to the right \rightarrow unloading of O_2 to the tissues$
 - $\downarrow P_{50} \rightarrow \uparrow$ affinity of Hb for $O_2 \rightarrow$ the curve is shifted to the left \rightarrow unloading of O_2 to the tissues is more difficult

Shift to the right \clubsuit Affinity ($\textcircled{1} P_{50}$) \Rightarrow unloading of O_2 to the tissues is facilitated.

The Shifting HbO₂ Dissociation Curve

Shift to the right

♣ Affinity ($\textcircled{1} P_{50}$) ⇒ unloading of O_2 to the tissues is facilitated.

- ⑦ ①PCO₂, ①H⁺ or ↓ pH
 - Exercise: ↑CO₂ production ⇒↑ H⁺
 ⇒ ↓ pH ⇒ shift to the right ⇒ ↑ O₂
 delivery to the exercising muscles
 - Bohr effect: ↓ in O₂ affinity of Hb when pH of blood falls (deoxy-Hb binds H⁺ more actively than does oxy-Hb), deoxy-Hb is weaker acid and a strong buffer)
 - Hb unsaturation in tissues:
 - ⇔ ↓ Po₂(98-99%)
 - $\Rightarrow \uparrow PCO_2 \text{ in blood} \rightarrow \downarrow pH \rightarrow \text{the curve} \\ \text{shift to the right (1-2\%)}$

① ① Temperature (e.g. exercise): ③ ① 2,3-BPG concentration:

- 2,3-BPG is produced in RBC by glycolysis, is highly charged anion that binds to β chain of deoxy-Hb
- $HbO_2 + 2,3-DPG \rightarrow Hb-2,3-DPG + O_2$
- Factors affecting 2,3-DPG
 - 1) pH of blood
 - $\downarrow pH \rightarrow inhibit glycolysis \rightarrow \downarrow 2,3-DPG$
 - $\uparrow pH \rightarrow \uparrow 2,3$ -DPG: high altitude (low PO₂) \rightarrow hyperventilation $\rightarrow \downarrow CO_2 \rightarrow \uparrow pH \rightarrow \uparrow 2,3$ -DPG
 - 2) T₃ &T₄, GH, and rogens $\rightarrow \uparrow$ 2,3-DPG
 - 3) Exercise $\rightarrow \uparrow 2,3$ -DPG (60 minutes), \uparrow temp, $\uparrow CO_2 \rightarrow \uparrow P_{50}$
 - 4) Blood banking $\rightarrow \downarrow$ 2,3-DPG

Shift to the left:

① Affinity of Hb to O₂ → ↓ P₅₀ → unloading of O₂ is more difficult.

• Causes:

- 1. \downarrow [H⁺] \downarrow PCO₂
- 2. \downarrow Temperature
- 3. \downarrow 2,3-BPG concentration
- 4. Fetal hemoglobin
- 5. CO

O₂-Hb dissociation curve of fetal Hb is to the left of adult Hb

Facilitates movements of O₂ from maternal to fetal blood

Carbon Monoxide (CO)

- The affinity of Hb for CO is 230 times that for O_2
 - 1) CO competitively blocks the combination of O₂ with Hb (Hb-CO)
 - 2) CO also shifts the O_2 -Hb dissociation curve to the left

 $1\&2 \rightarrow$ sever tissue hypoxia

Рсо	Hb-CO	HB-O ₂
0.4mmHg (0.4 ÷ 760 = 0.05%)	50%	50%
0.7mmHg (0.7÷760 = 0.09%)	Most of hemoglobin is Hb-Co (lethal)	

• Treatment of CO poisoning:

- Pure O₂ (high alveolar PO₂ displace CO from Hb)
- Few % of CO₂ (stimulate respiration \rightarrow hyperventilation $\rightarrow \downarrow$ alveolar CO $\rightarrow \uparrow$ CO release from Hb)

Myoglobin

- Iron-containing pigment in skeletal M
- One heme unit \rightarrow one molecule of O_2
- Myoglobin does not show Bohr effect
- Myoglobin has a lower P_{50} than adult Hb
- ⊙ The ODC for myoglobin is a rectangular hyperbola
 - The curve is to the left of Hb curve
 - It takes up O₂ from Hb and releases O₂ only at very low PO₂ values
- In exercise (sustained muscle contraction) → compression of blood vessels → \downarrow PO₂ in the muscle → (muscle utilizes O₂ in myoglobin)
 - Myoglobin acts as temporary store of O₂ in the muscle
 - A man of average size can store 1.5 L of O₂, in his myoglobin at rest

	Hemoglobin	Myoglobin
Location	RBC	Muscles (skeletal muscle)
Heme subunits	4	1
Binding with O ₂	4 molecules	1 Molecules
Bohr effect	Show	Dose not show
P ₅₀	27 mmHg	5 mmHg
ODC	Sigmoid shaped	Rectangular hyperbola

Blood substitutes:

The solubility of O₂ in plasma is limited. Certain compounds dissolve much more O₂, can be used to totally replace blood for short period (emergency) until blood can be obtained and cross matched.